
1

Proc., IBPSA Building Simulation ’99,
Sept. 13-15, 1999, Kyoto, Japan

LBNL-44097

NUMERICAL PERFORMANCE OF THE SPARK GRAPH-
THEORETIC SIMULATION PROGRAM

Edward F. Sowell
California State University

Fullerton, CA 92834

Philip Haves
Building Technologies Department

Environmental Energy Technologies Division
Lawrence Berkeley National Laboratory

University of California
Berkeley, CA 94720

September 13, 1999

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy,
Office of Building Technology, State and Community Programs, Office of Building Systems of the

U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
Portions of this work were sponsored by the Japan Ministry of Education and the United Kingdom

Royal Academy of Engineering Foresight Award Scheme.

2

3

Numerical Performance of the SPARK Graph-Theoretic Simulation Program

Edward F. Sowell
California State University

Fullerton, CA 92834

Philip Haves
Building Technologies Department

Lawrence Berkeley National Laboratory
Berkeley, CA 94720

ABSTRACT

The Simulation Problem Analysis and Research Kernel (SPARK) uses graph-theoretic
techniques to match equations to variables and build computational graphs, yielding solution
sequences indicated by needed data flow. Additionally, the problem graph is decomposed into
strongly connected components, thus reducing the size of simultaneous equation sets, and
small cut sets are determined, thereby reducing the number of iteration variables needed to
solve each equation set. The improvement in computational efficiency produced by this graph
theoretic preprocessing depends on the nature of the problem. The paper explores the
improvement one might expect in practice in three ways. First, two problems chosen to span the
range of performance are studied and some of the factors determining the performance are
identified and discussed. The problem selected to exhibit a large improvement consists of a set
of sparsely coupled non-linear equations. The problem selected to represent the other end of
the performance spectrum is a set of equations obtained by discretizing Laplace’s equation in
two dimensions, e.g. a heat conduction problem. Execution time versus problem size is
compared to that obtained with sparse matrix implementations of the same problems. Then, to
see if the results of these somewhat contrived limiting cases extend to actual problems in
building simulation, a detailed control system model of a six-zone VAV HVAC system is
simulated with and without the use of cut set reduction. Execution times are compared between
the reduced and non-reduced SPARK models, and with those from an HVACSIM+ model of the
same system.

BACKGROUND

SPARK is a simulation program for non-linear, continuous systems that is currently under
development at the Lawrence Berkeley National Laboratory (Buhl, Erdem et al. 1993). The
methodology relies upon the mathematical graph for model representation and solution. While
ideas from graph theory have been used in connection with equation system solving before
(Coates 1959; Harary 1959; Parter 1961; Harary 1962; Tarjan 1972, Steward, 1962; Edwards
1982), in SPARK graph methods are applied directly to the nonlinear equations. The graph,
rather than the matrix, is the primary data structure for storing the problem structure and data,
and graph algorithms are employed to determine a solution sequence that operates directly on
the nonlinear equations. Another distinctive attribute of the approach is that the model equations
are stored individually, rather than packaged into modules, and are treated as equations rather
than as formulae with assignment (algorithms). Symbolic methods are employed to find explicit
inverses of the equations, when possible, to ensure computational efficiency.

In these ways SPARK is unique. However, increasingly, simulation software is employing some
of the ideas embodied in SPARK. For example, Klein, in collaboration with F. Alvarado,
produced the Engineering Equation Solver, which employs decomposition using sparse matrix
methods. This is conceptually the same as the strong component decomposition done in
SPARK (Klein 1991). However, reduction within blocks is not done in this software. TRNSYS

4

has recently been modified to allow “reverse solving” (Fiscal, Thornton et al. 1995). This is a
move toward input/output free (non-algorithmic) modeling, another tenet of SPARK. Also in the
building context, Tang has applied graph theoretic methods to improve matrix-based solution
schemes (Tang 1991; Tang and Clarke 1993).

Although the SPARK methodology is well established there has been relatively little systematic
comparisons of solution speed between SPARK and alternative methods available for solving
large sets of equations such as arise in building simulation. In order to begin to fill this gap, an
experimental research project was undertaken by one of us (Sowell) while on sabbatical at
Nagoya University. Two problems sets were tested in this work: (a) a replicated set of four
nonlinear equations, and (b) the Laplacian equation, i.e., heat conduction, in a two dimensional
grid of various sizes. These two problems, while somewhat removed from mainstream building
system simulation, were selected to represent the endpoints in degree to which problems are
suited to the methods used in SPARK. To complement findings from these simple problems, the
study was extended to include actual building HVAC systems models of considerable
complexity. The system selected is one previously studied by Haves (Haves, Norford et al.
1998) using a different building simulation tool, thus providing opportunities for direct
comparison.

NONLINEAR EQUATION EXAMPLE

The first benchmark problem derives from a problem in the SPARK Users’ Manual comprising
four highly nonlinear equations:

3

1

34

2
3
44341

12

12
2
231

x

x

exx

cxxxxx
exx

cxxxx

�

�

���

�

���� (1)

SPARK finds a solution to these equations by the calculation sequence:

1.03 �x

2
2
2123

12

4
3
44321

34

1

3

/)(

xxxcx

exx

xxxxcx

exx

x

x

����

�

���

�

�

(2)

Iterate on 3x

Using the default SPARK solution process, Newton-Raphson iteration is performed until the
difference between two successive values of 3x is less than a specified tolerance. Thus it is
seen that reduction of 4:1 is achieved relative to conventional practice of iteration on all
unknown variables. With c1=3000 and c2=1 the solution found is x4= 0.288576, x1 = 2.9273, x2 =
54.6738, and x3 = 0.454716.

For the numerical experiments, this set of equations was implemented as a SPARK macro class
called example which was then instantiated n/4 times to get a problem of size n. Obviously,
every instance of example is in fact a separately solvable problem. SPARK is able to discern
this structural regularity and partition the problem graph into n/4 strongly connected

5

components, each with a cut set of size one. Consequently, during the numeric phase of the
solution, n/4 single-variable iterative solutions are carried out. Most conventional, general
solvers would instead solve a single equation set of size n by iteration on all n variables. If
Newton-Raphson iteration were used, a linear set with an n by n coefficient matrix would need
to be solved at each iteration.

For comparison purposes this equation set was also solved with two other methods. First, a
handcrafted Newton-Raphson nonlinear solver (nlsolve) was written specifically for this equation
set, with the problem size as an input parameter. In this solver, the four Eqs. (1) were coded in a
single function that was called as needed for calculation of the residual functions and the
Jacobian. The matrix functions from SPARK were used to numerically calculate the Jacobian
and solve the linear set for new estimates of the iteration variables. Second, a sparse Newton-
Raphson solver (spnlsolv) was written using the sparse LU solve function from the Meschach
sparse matrix package (Stewart and Leyk 1994). The interface, function evaluation, Newton-
Raphson loop, and output were basically the same as for nlsolve, with the only difference being
the use of sparse storage date types and sparse matrix solver functions from Meschach. Of
course, the same solution tolerance (1x10-6) was used in both cases.

Comparative run times with a 333MHz
AMD K-6/2 processor are shown in Fig.
1. As would be expected, the
experimental results show
O n()3 performance for the full matrix
solution. The solver based on the
Meschach sparse matrix functions
shows much better performance,
approximately)(2nO . Also as expected,
SPARK is much better than the sparse
implementation, showing about)(nO .

0

5

10

15

0 1000 2000 3000 4000

Number of Equations

R
un

 T
im

e
(s

ec
)

NLSolve SPNLSolve SPARK

Figure 1. Solution times for nonlinear benchmark.

LAPLACIAN EXAMPLE

The second benchmark problem, purposely chosen to be not well suited to the SPARK
methodology, is the 2-dimensional Laplacian equation. This equation models many physical
phenomena, including heat transfer in a thin, square plate with uniformly distributed heat source
and uniform boundary temperature. The problem is discretized by dividing the square into a
uniform grid of specified size. Each cell in the grid is represented by a nodal temperature jiT ,

and is governed by a heat balance equation

)()(
)()(

,1,1,,

,1,1,,,

jijijiji

jijijijijsi

TTTT
TTTTq

��

��

����

���� (3)

where jsiq , is the heat source rate per unit surface area. As can be seen, internodal
conductance is assumed to be 1.0.

6

This problem is coded for sparse solution in the Meschach tutorial (Stewart and Leyk 1994).
However, for this study that implementation was modified to employ sparse LU factorization,
since the use of Cholesky factorization and sparse conjugate gradient iteration in the original
code applies only to symmetric positive definite matrices, a condition satisfied by the Laplacian
but not often found in general simulation problems.

For comparison, a program was written to generate SPARK problem and input files for the same
equation system. The grid size was varied between 3 and 45, yielding equation set sizes
between 9 and 2025. Both SPARK and the Meschach-based solver were compiled with the
same compiler and optimization options.

In the initial SPARK implementation, each grid node was represented with a SPARK macro
object called node constructed with atomic conductor and sum objects from the SPARK HVAC
class library (Sowell and Moshier 1995). With this implementation and a grid size of 19 x 19, the
SPARK solution time was about 60 times that of the Meschach solver. While a weak SPARK
showing was anticipated for this problem, this huge difference was a surprise, calling for further
investigation.

The first reason for the long SPARK run times was found to be representation of the node as a
macro object. This resulted in seven distinct equations for each node, four of the form
q u T T� �()2 1 and three of the form cba �� , giving 2530 equations for the grid size of 19 x 19.
Although the SPARK graph theoretic algorithms were able to find a cut set of 342, a reduction of
86%, the Meschach implementation was hand-crafted so that there were only 361 equations in
the set to be solved. Moreover, the Meschach implementation assumed an inter-nodal
conductance of unity, Eq. (3), so no multiplications were needed. Therefore even after graph
theoretic reduction brought the Jacobian size down approximately the size seen by Meschach,
the SPARK model required many more arithmetic operations in evaluation of each equation. In
short, the problems seen by the two solvers were not the same, even though they both
represented the same physical problem.

To try to get a more meaningful comparison, both models were changed in several ways. First,
the SPARK implementation was revised to more closely approximate the problem as seen by
Meschach. A specialized SPARK atomic object class was written to represent the node as a
single heat balance equation with an assumed unit conductance, as in the Meschach
implementation. With this revision there were only 361 objects in the SPARK model for the 19 x
19 grid, and the SPARK solution times improved considerably.

Then, to see to what extent the presumably more efficient data handling methods in Meschach
contribute to its speed advantage, the SPARK solver was modified to optionally use either
sparse or non-sparse vector-matrix data structures and functions from Meschach when updating
the solution vector. These changes both produced substantial speed-up, with the sparse
handling option performing essentially as well as Meschach (See DISCUSSION).

Another difference observed between the two approaches was that because SPARK is a
general nonlinear solver it employs Newton-Raphson iteration, requiring numerical calculation of
the Jacobian matrix at each iteration. In contrast, the handcrafted Meschach model is aware of
the problem linearity and constant coefficients and consequently sets up the conduction matrix
only once, directly from the given coefficients. Since this study was concerned principally with
solving methods for nonlinear equation systems, it was of interest to see how much of the run
time difference was due to extra work in SPARK associated with nonlinear solving. However,

7

rather than changing SPARK, a second Meschach-based model was developed in which the
system of equations was set up for solution as if they were nonlinear. That is, a Jacobian was
formed numerically, as in SPARK, and Newton-Raphson iteration was performed to obtain
solution. A Meschach sparse solver and supporting vector-matrix routines were used to
calculate the solution vector for each iteration. Note that while this approach has the advantages
of Meschach’s efficient data handling and sparse matrix operations, it does not share SPARK’s
ability to reduce the Jacobian size.

The results of the various solution methods are brought together in Fig. 2. The three solid
curves show SPARK solution times versus total number of equations. The uppermost curve is
for solution with the current, standard SPARK. The next lower curve was generated using the
modified version of SPARK with the Meschach non-sparse handling of the Jacobian as
mentioned above, while the lowest curve results from use of the sparse option. In all three
cases, the graph theoretic matching and cutting were coerced with input options so as to get the
theoretical minimum cut set size while preserving diagonal dominance of the reduced Jacobian.
This is an important qualification and is discussed further below.

0

50

100

150

0 500 1000 1500 2000 2500

n

R
un

 T
im

e
(s

ec
)

SPARK SPARK/Meschach Sparse Jacobian
Sparse LU SPARK/Sparse

The dash-line curve in Fig. 2 is for
solution using the Meschach based
Newton-Raphson solver described
previously. Performance is seen to be
significantly better than the standard
SPARK, and somewhat better than the
modified SPARK using non-sparse
methods. However, it is not as good as
SPARK using sparse Jacobian
handling.

The final results in the figure are for the
Meschach Tutorial program using
sparse LU decomposition. These results
overlay almost exactly those for the
modified SPARK using sparse Jacobian Figure 2. Solution times for the Laplacian equation.

handling, so a separate trend line is not plotted. However, this agreement is coincidental.
Apparently, the reduced Jacobian size in SPARK offers a speed advantage that overcomes
SPARK overhead costs such as function calls and numerical Jacobian evaluation, not done in
Meschach.1

HVAC BENCHMARKS

Going beyond simple benchmark examples, the numerical methods used in SPARK were also
evaluated by modeling an airflow system employing discrete-time controllers. The example used
was a typical HVAC airflow network and its associated control loops, a problem involving
significant computational burden (Haves, Norford et al. 1998).

A number of steady state component models were implemented as SPARK objects, including
variable speed centrifugal fans, flow diverters, flow mixers and control dampers. In modeling air
flow, a square law dependence of total pressure drop on flow rate was used above a critical flow

1 In the current implementation, SPARK makes a call to a C++ function for every equation evaluation.

8

rate and a linear dependence was used below the critical flow rate to avoid known
computational problems with air at low flow rates. Dynamic models included flow sensors,
pressure sensors, rate limits, discrete-time proportional-plus-integral (PI) controllers and fan
control strategies based on PI control.

Figure 3 shows the system that was
simulated. The positions of the mixing
box dampers determine the proportions
of outside and recirculated air that are
filtered and cooled before being
supplied to the six zones of the building.
The positions of the terminal box
dampers determine the air flow rates to
the corresponding zones. The speed of
the supply fan is determined by a PI Figure 3 HVAC system.

controller that regulates the static pressure of the air in the supply duct. The speed of the return
fan is determined by a PI controller that regulates the difference between the supply airflow rate
and the return air flow rate. For the purposes of the benchmark tests, the various damper
openings were treated as boundary conditions. In the airflow network used to model the duct
system there were 28 flow rate variables and 30 pressure variables, three of which were
boundary variables.

In order to assess the benefits of using SPARK methods, a base case and two reference cases
were constructed. The base case was modeled with SPARK in the normal manner, allowing the
graph theoretic techniques to perform reduction of the problem graph. The two reference cases
were:

� The system modeled using the HVACSIM+ program (Park, Clark et al. 1985), as in the
previous work (Haves, Norford et al. 1998).

� The system modeled using SPARK, but inhibiting the normal problem reduction
techniques.

The use of the two reference cases enables the benefits of the graph theoretic techniques to be
separated from the effects of program architecture.
For all three cases, the simulation carried out was for a period following set point changes at
each controller, causing progressive closing of the VAV terminal boxes.

In addition to these comparisons directed at assessment of the importance of reduction, we did
a side study to determine whether “breaking” of control loops offers computational advantage.
The interest in this derives both from the needs of proper models of discrete time sample-and-
hold controllers, and for introduction of artificial delays as a computational device to speed
solution.

Comparisons between HVACSIM+ and SPARK are shown in Table 1.

Table 1 Comparison for HVACSIM+ and SPARK

Time (s) Iteration Variables
Control loops HVACSIM+ SPARK HVACSIM+ SPARK
Intact 1135 48.8 62 15

9

Broken 785 52.7 55 15

In the first comparison, Control loops Intact, the flow network equations and the controller
equations are solved simultaneously. The main result is that SPARK is 15 - 20 times faster than
HVACSIM+. The obvious reason for the speedup is that SPARK achieves a 4:1 reduction in the
number of variables in the iteration vector.

In the second comparison, Control loops Broken, the set of simultaneous equations
representing the airflow network and those representing the control system are solved
sequentially. This corresponds to breaking the algebraic loops, such as by introduction of a
sample-and-hold in the controller, or an artificial delay. Whereas a significant benefit was gained
from breaking the control loops when using HVACSIM+, there was no such benefit when using
SPARK. The reason for this, as discussed in another paper (Haves and Sowell 1998), is that
SPARK finds fan discharge pressures of the supply and return fans to be good choices for
break variables, so computation loops are broken regardless.

In order to determine how much of the SPARK advantage can be attributed to the problem
reduction, these techniques were disabled, producing the results shown in Table 2 for the Intact
loops case.

Table 2 Effect of SPARK reduction

HVACSIM+

SPARK
unreduced

SPARK
reduced

No. of Eqns. 62 62 15
Exec. time (s) 1135 637 48.8

These results show that the effect of the problem reduction techniques in SPARK is to speed
the benchmark problem up by a factor of 13. This is approximately what would be expected
from the reduction in the number of equations.

DISCUSSION

The above results confirm that the SPARK methodology offers significant reduction in solution
times relative to conventional matrix methods in the solution of certain kinds of nonlinear
equation systems. This is borne out most dramatically by the contrived nonlinear benchmark
problem, but is also quite clear from the HVAC control application. However, in the case of the
Laplacian example we observe that without some user intervention, SPARK has difficulties
competing with sparse methods. Understanding why this occurs is important in order to guide
improvement to the SPARK methods, or to properly delineate the class of problems amenable
to SPARK methods.

To understand the observed differences in run times it is important to note that at the heart of
the Newton-Raphson nonlinear solution process is the solution of a linear problem. That is,
during each iteration the solution vector must be updated by solution of the equations

�

�

��

�

� kk

k

xx
xfJ

1

)((4)

10

where x is the solution vector of size n, f is the vector of functions being solved, � is the
correction vector, and J is the Jacobian. Now, since J is n by n, calculation of its elements is
O(n2), whether done numerically by finite difference (the usual case), or from derivative
formulas. Moreover, solution of linear systems is in general an O(n3) process. Since evaluation
of the functions f is only of O(n), evaluation of the Jacobian and solving the linear set are the
overriding factors in determining run time. Consequently, anything that can be done to reduce
the size of the Jacobian has a powerful effect, especially for large problem size.

SPARK gains its advantage over conventional methods by reducing the Jacobian size. It does
this in two, separate ways: decomposition and cut set reduction. Decomposition is possible
when the equation set is, in reality, a sequence of separately solvable problems. SPARK is able
to detect this property automatically and carry out the decomposition without intervention. For
example, the nonlinear benchmark problem with 100 equations and variables is decomposed
into 25 subproblems (or, in graph terms, strongly connected components) each of size 4. This
alone would reduce the run time from O(1003) to 25xO(43), i.e., a factor of 625. Cut set reduction
refers to reducing the sizes of the Jacobians of the subproblems. This is done by an algorithm
that finds a set of nodes in the problem graph that breaks all cycles, called a cut set. In practical
terms, the cut set variables form the iteration vector for the Newton-Raphson process. Again
looking at the nonlinear benchmark problem, a cut set of size one was discovered in each
component. Thus the 25 Jacobians are all 1x1, so the overall theoretical run time reduction is by
a factor of 40,000. Of course, this efficiency gain is only partially realized due to overhead
associated with the SPARK implementation, but this analysis clearly explains the observed
excellent performance for this example.

A similar analysis shows why SPARK has difficulties with the Laplacian example. In this case
the problem graph, Fig. 4, is more complex, with each node biconnected to four neighbors.

Figure 4. Laplacian graph.

One consequence of this high degree of interconnectedness is that the problem does not
decompose, so that it has to be solved as a single strongly connected component. Another is
that a small cut set is hard to find. The normal SPARK cut set algorithm works on the principle
of contraction, in which nodes with single incoming or outgoing edges are bypassed and
removed, thereby producing progressively simpler graphs from which the cut set can be
deduced. However, there are no such nodes in this graph, so the algorithm must revert to
arbitrary removal of nodes into the cut set (Levy and Low 1988). In many problems, arbitrary

11

removal results in further opportunities for contraction. Such is not the case here, so the
algorithm continues to do arbitrary removal, arriving at a relatively large cut set. For example, in
the 45x45 grid case (2025 nodes) the discovered cut set is 1894. This is a reduction in Jacobian
size of only 5%, hardly enough to overcome overhead costs. Indeed, with this cut set the
SPARK run time was nearly 7 times that shown in Fig. 2.

However, it is not difficult to see that a much smaller cut set is possible for the Laplacian.
Suppose that for odd rows in the grid we mark with b (for break) every even column node, and
apply the reverse policy in even rows. This creates a checkerboard pattern on the grid in which
every marked node is surrounded by unmarked ones, as shown in Fig. 4. Clearly, the marked
nodes form a cut set, since every unmarked node can be calculated given temperature values
at the marked ones. This policy can be implemented in a SPARK model using the break_level
keyword, coercing he algorithm to choose the wanted breaks. When this is done, the cut set
size is n/2, producing results shown in Fig. 2. In a future version of SPARK it may be possible
to improve the matching and cutting algorithms to detect regularities in the problem graph so as
to automatically arrive at smaller cut sets in problems of this nature.

While SPARK seeks solution efficiency through graph theoretic reduction, sparse solvers seek it
by taking advantage of sparsity in the Jacobian. The first goal in a sparse implementation is to
reduce memory usage by storing only nonzero elements in matrices. Secondly, special
functions are used to carry out operations such as vector-matrix multiplications with operations
performed only on nonzero elements. The Meschach package is very effective in this regard, as
evidenced by its performance on the Laplacian problem here. Indeed, the solutions times,
shown in Fig. 2, are not only (slightly) smaller than the best SPARK performance, but also are of
O(n2). The reason, of course, is that regardless of the size of the matrix, there are only 5
nonzero entries in each row, and consequently only 5 multiplications and 4 additions in
evaluation of each row-vector product. That is, the per-row operations are constant rather than
O(n). More advanced sparse implementations go beyond memory saving and efficient vector-
matrix operations. For example, there are algorithms that, if possible, reorganize the matrix into
block-diagonal form, allowing a partitioned solution that is somewhat equivalent to the strong
component decomposition done in SPARK (Tarjan 1972; Klein 1991). The Meschach package
currently does not have this feature, as evidenced by its rather poor performance in our
nonlinear benchmark example.

An important outcome of this study is the importance of employing sparse methods within
SPARK. This is because in problems like the Laplacian the Jacobian can still be quite sparse,
even after reduction. In the 45x45 grid, only 1% of the 1012x1012 Jacobian cells are nonzero.
This explains the dramatic reduction in SPARK run time in Fig. 2 for the sparse Jacobian
modification. Work now underway will provide a sparse solution option in SPARK. This will be
selectable on a component by component basis.

The HVAC simulation benchmarks also provide insights into the effectiveness of SPARK
solution methodology. From Table 1 we see that SPARK has a clear advantage over
HVACSIM+ in simulation of detailed control models. Table 2 also shows that a good deal of the
advantage remains even if reduction is not done, raising questions about what other factors are
at play. We are unable to fully answer this question, but some contributing factors might be
heavier reliance on preprocessing of the problem in SPARK. That is, the graph theoretic
analysis is carried out in a separate setup program, which then generates a C++ file for
compilation. The output of the setup program is an efficient representation of the problem, with
the computation sequence more or less built into the data structures. This saves time that a
program like HVACSIM+ has to spend moving data from place to place and doing run-time

12

branching checks and control transfers. Of course, in a large problem (thousands of equations)
there can be a significant computational effort involved in the preprocessing step. For short
simulation runs, such as the benchmarks reported herein, the time involved may be comparable
with or longer than that required to run the problem. However, the SPARK approach has
clear advantages for longer or repeated runs.

CONCLUSIONS

1. Empirical results confirm that SPARK outperforms sparse matrix methods for solution of
problems represented by equation systems that can be decomposed and/or reduced with
graph theoretical techniques. Roughly speaking, execution time savings will be)(3mrO
where r is the ratio of the largest cut set size to the number of equations in the problem, and
m is the number of strongly connected components into which the problem partitions.

2. Typical HVAC air flow systems, including associated controls, are among the kinds of
problems benefiting from the SPARK solution methodology. The reduction techniques
produced close to the maximum reduction in the benchmark HVAC problem, and there are
indications that similar reductions can be expected in the broad class of problems involving
flow networks and their associated control systems. Reductions in execution time of more
than an order of magnitude can be expected relative to full-matrix solvers such as
HVACSIM+.

3. Problems characterized by a high degree of interconnectivity, such as energy, mass, or
momentum transport in homogenous media, allow limited reduction and therefore are not
prima fascia candidates for SPARK solution methods. However, by proper coercion of
matching and cut set selection, significant execution time reduction can still be achieved.
Moreover, since the reduced Jacobian in these problems is still very sparse, conventional
sparse matrix methods can be beneficially applied after reduction. When this is done,
SPARK can be competitive with sparse solvers for this class of problems.

REFERENCES

1. Buhl, W. F., A. E. Erdem, et al. “Recent Improvements in SPARK: Strong Component
Decomposition, Multivalued Objects, and Graphical Interface,” Building Simulation '93,
Adelaide, International Building Performance Simulation Association. 1993.

2. Coates, C. L. “Flow-graph Solutions of Linear Algebraic Equations,” IRE Transactions on
Circuit Theory 6: 170-187. 1959.

3. Edwards, D. W. “Robust Decomposition Techniques for Process Design and Optimization,”
Ph.D. Thesis, Chemical Engineering, University of London. 1982.

4. Fiscal, A., J. Thornton, et al. “Developments to the TRNSYS Simulation Program,” Journal of
Solar Energy Engineering 123(5). 1995.

5. Harary, F. “A Graph Theoretic Method for the Complete Reduction of a Matrix with a View
Toward Finding its Eigenvalues,” J. Math. Physics 38: 104-111. 1959.

6. Harary, F. “The determinant of the adjacency matrix of a graph,” Society of Industrial and
Applied Mathematics 4(3): 202-210. 1962.

7. Haves, P., L. K. Norford, et al. “A Standard Simulation Testbed for Evaluation of Control
Algorithms & Strategies,” Transactions of the American Society of Heating, Refrigerating,
and Air-conditioning Engineers 104(1). 1998.

13

8. Haves, P. and E. F. Sowell. “The Application of Problem Reduction Techniques Based on
Graph Theory to the Simulation of Nonlinear Continuous Systems,” EuroSim, Birmingham,
England, Society For Computer Simulation. 1998.

9. Klein, S. . “Engineering Equation Solver (EES),”. Madison, F-Chart Software. 1991.
10. Levy, H. and D. W. Low. “Contraction Algorithm for Finding Small Cycle Cut Sets,” J.

Algorithms 9: 470-493. 1988.

11. Park, C., D. R. Clark, et al. “An Overview of HVACSIM+, a Dynamic Building/HVAC Control
Systems Simulation Program,” Proceedings of the First Building Energy Simulation
Conference, Dec. 3-6., Seattle, WA, International Building Performance Simulation
Association. 1985.

12. Parter, S. “The Use of Linear Graphs in Gauss Elimination,” Society of Industrial and Applied
Mathematics 3(2): 119-130. 1961.

13. Sowell, E. F. and M. A. Moshier. “HVAC Component Model Libraries for Equation-based
Solvers,” Building Simulation '95, Madison, WI, International Building Performance
Simulation Association. 1995.

14. Stewart, D. E. and Z. Leyk. “Meschach: Matrix Computation in C,” The Centre for
Mathematics and Its Applications, The Australian National University. 1994.

15. Tang, D. “The Generalised System Solution Classes in the EKS Environment,” Building
Simulation '91, Nice, International Building Performance Simulation Association. 1991.

16. Tang, D. and J. A. Clarke. “Application of the Object Oriented Programming Paradigm to
Building Plant System Modelling,” Building Simulation '93, Adelaide, International Building
Performance Simulation Association. 1993.

17. Tarjan, R. E. “Depth first search and linear graph algorithms,” SIAM Journal of Computing 1:
146-160. 1972.

NOMENCLATURE

cI Scalar constant

� Correction in Newton-Raphson iteration

f Vector of functions being solved in Newton-Raphson iteration

J Jacobian matrix in Newton-Raphson iteration
LU Lower/Upper matrix factorization.
n Number of equations and variables
O(f(n)) Order of notation. The operation in question is bounded from above by g(n) where n is

size of data operated on.
PI Proportional-Integral control scheme

jsiq , Heat source rate per unit surface node in discrete Laplacian equation

Ti,j Temperature of (i, j) node in discrete Laplacian equation
U Conductance

14

x Solution vector of size n in Newton-Raphson iteration

xi Scalar variable

ACKNOWLEDGEMENT

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy,
Office of Building Technology, State and Community Programs, Office of Building Systems of the
U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
Portions of this work were sponsored by the Japan Ministry of Education and the United Kingdom
Royal Academy of Engineering Foresight Award Scheme.

15

